C++ for Ocean Modeling Branch Consideration

Robert W. Grumbine
Ocean Modeling Branch

National Centers for Environmental Prediction

June 14, 2000

Technical Note

OMB Contribution 185



1 Abstract

C++ is a modern programming language (mid 1980’s invention) which provides a number
of features which make it useful for some OMB tasks. The two major features are abstract
data types (a late 60’s to mid 70’s invention) and object orientation (an 80’s invention).
Tasks for which these are particularly helpful are data-related processing and graphics. This

document discusses these features, and how to use the OMB C-++ library.



Contents

1 Abstract

2 Introduction

3 Abstract Data Types

4 Objects Introduction

5 Objects: Operators, and Overloading

6 Object Templates and Inheritance

7 Using the OMB Class Library

8 References

10

15

17

22

23



2 Introduction

Fortran, which we’re all familiar with, has a long history and is very well adapted to the core
modeling activities that we often are involved in. On the other hand, it does date to the
1950’s, and some things have been learned in the last few decades on how to build a general
purpose programming language. Two of the key elements are abstract data types, and object
orientation. Fortran 90 (which we is now available on the workstations and central systems)
takes some steps in the direction of abstract data types. Object orientation is still left out
of Fortran (and it isn’t clear to me that it is even possible to add it without breaking some
of the features which make Fortran efficient for the modeling).

Abstract data types are structures which the programmer, rather than the language,
defines. One we could use is ’buoy report’. A buoy report contains certain types of infor-
mation, all of which should remain associated with each other. In Fortran, I've kept the
association by doing things like having a bunch of arrays (latitude, longitude, temperature,
wind speed, pressure, ...) and using the same index to mean a given buoy. While this works,
it does leave open the possibility that I've mis-typed an entry so that I’ve got latitude(j) and
longitude(i), where i and j turn out to be different numbers. (Murphy’s law being what it is,
I've done exactly this.) With an abstract data type, I would be referring to buoyreport(j).
Each element is then pieced together by the computer and I don’t have to remember multiple
indices. Much reduces the opportunity for errors (though, of course, Murphy will have his
shots anyhow). It also means that in writing the program, I can use much more intuitive
description and intuitive functional units. All of my data are in nice little packages, and I

can define the packing to be as close as possible to how I think of the problem.



Object orientation takes this the next steps. The first step is, we package not just data
units, but the operations that we routinely perform on those units. The major step is that
once we’ve declared some object type, say a '2d grid’, we can then create a new object type,
such as a 'metric 2d grid’, which will on creation be able to do all the things that the ’2d
grid’ was able to do (we packed the operations in to the definition)! This is inheritance. In
this example, 2d grid is just a 2d array of things — they may be numbers, they could be buoy
reports, they could be model fields. The metric grid adds operations to locate i,j points in
terms of latitude and longitude. More on this later.

Once these objects are created, if we’ve done the job correctly, any later user can use the
objects without having to go in to the gore of how things are being done. This goes well
beyond the Fortran notion of having a library of functions and subroutines. In Fortran (even
in ’90) if you wanted to locate the latitude-longitude of a point in a grid, you’d still have
to know the full grid specification (standard latitude, standard longitude, location of pole
in x and y, resolution in x and vy, ...). With C++, you would request creation of a 1/16th
Bedient mastermap object (call it x). If you then wanted the location of a point in that grid,
you'd get it by asking for x.locate(ijpt). At no time do you need to know anything about
the nature of the grid (even the fact that it is polar stereographic, much less what a Bedient
grid is). The grid is an object, and the behavior of the object is specified by the library.

In the rest of the document, I’ll go in to some more detail on how it is that C++ fills
these roles, and what it is that is useful to us. A reminder is that if the primary operation is
hammering on arrays of numbers, then Fortran is still the preferred language. If the problem,
as it is for satellite data, involves mostly deciding what the data are that we’re going to work

with, and doing some relatively modest mathematics on them, then C++ is probably the



better tool. T'll go in to detail later, but note that BUFR and GRIB messages are themselves
objects. Much of our agony in dealing with them is that we’re not treating them as objects.
The following sections are: abstract data types, objects introduction, objects and opera-

tors, object templates and inheritance, using the OMB class library, and other considerations.

3 Abstract Data Types

Both C and C++ (and now Fortran 90) permit abstract data types. While I don’t want to
embed details of how the languages do this, it will be helpful to include illustrations, so I’ll

use a pseudo-language. From the example already alluded to, let’s create a buoy report data

type:

type buoyreport {
real lat, long;
real t_air, pressure, t_sea, u_wind, v_wind;
integer qc_code, platform_type;
character name[60];

integer yy, mm, dd, hh;

In other words, we’ve declared that there is something called a buoy report, and that every

buoy report has certain data associated with it. Inside the program, we can then declare

buoyreport x[1000];



exactly as we might say REAL x(1000) to declare an array of 1000 real numbers. In this
case, we’ve declared an array of 1000 buoy reports.
This is only a start on using abstract data types, but let’s see what we can gain by it.

First, we can do windowing more readily, e.g.

if (abs(x[i].lat - lat_ref) < 0.2 AND abs(x[i].lon - lon_ref) ) then
C process data for being in range

endif

Note that elements of a buoyreport are referred to by giving the name of the variable (x)
dot element name. The above is more flexible and readable than having separate arrays for
latitude, longitude etc. (the Fortran 77 alternative). This is not a tremendous savings.

But now consider the processing that we would do. This likely will be done in a sub-
routine. In F77, we would have to give an argument list to the subroutine like SBR(lat,
lon, temp, etc. etc. etc.). And since the subroutine may not be in the same file as the
calling routine, we get the added joy of keeping two separate codes synchronized. The joy
increases when we’ve got multiple sorts of buoys, each with slightly different data elements.
By declaring the abstract data type, we avoid all of that. The subroutine is a subroutine
that takes a buoyreport as an argument. There’s nothing extra to synchronize between the
codes as we’ve defined what buoyreports are. If we later add different types of reports, say
to separate cman_reports, drifter_reports, etc., we only have to define what these entities
are (though in C and F-90, each of these must be declared in full separately. C++ permits
us to create a new type by saying that it is just like an old type except that it also has ...

whatever.)



There’s an additional level of utility in the abstract data types. That is, an abstract data
type can include data elements which are themselves abstract data types. In the buoyreport
example, I had yy, mm, dd as data elements. This is to record the time of the observation. It
would be more convenient to simply say date. We can do exactly that — declare a data type
called ’date’ and then make observation_time a variable in the buoy report. Now, when we
write our function to do a time difference check, we can call time_diff(timel, time2, delta),
where timel and time2 are the observation time, reference time, and the time difference (we
may choose to make that in hours, or perhaps to make it a ’date’ type variable itself).

This nesting of abstract types permits a very natural construction of the programming.
For my pre-BUFR SSMI - SDR data processing, for instance, I have a several level nesting,
each level of which makes internal sense. The set up was that there’s an orbit of data. Each
orbit of data has an sdr header followed by a number of data records. (SDR_-HEADER,
and DATA RECORD are then abstract data types we define). Each data record includes a
scan_header and a data_block. The scan header includes various elementary data pieces which
we look up, declare, and are finished with. The data_block includes some information on the
mode of the satellite, and then 64 pieces of ’long data’. Long data turns out to be latitude-
longitude of observation, surface type, position within the scan line, 7 antenna temperatures,
and three pieces of short data’. Short data is latitude-longitude of observation, surface type,
and two 85 Ghz antenna temperatures.

We can now work at whatever level we’re interested in. If we want the data that char-
acterize the orbit itself, they’re available in the sdr_header. If we want to know about the
scan line, it’s in the scan_header. If we’re looking for 19v antenna temperatures, those are

in the long_data, and so on. The great virtue here is that we don’t need all at once to know



how to locate all pieces of information. Further, we aren’t restricted from changing some of
the pieces. That is, we could discover that long data included a quality control flag (or we
decide to add one ourselves). Rather than rewriting every piece of code we have, we merely
change the definition of long_data, and only where we use or change this new bit, add some
code.

In the buoy report example, I listed the time of observation as being year, month, day,
hour. Suppose now we discovered that the buoys reported time to the minute. In the F-77
case, we have to add an argument to all our subroutines (in the right order, with the right
declarations within our called routines, etc.). With abstract data types, there is no change to
any routines except internal to the few routines that compute things with dates. Every other
routine merely refers to a date. They don’t care exactly what a ’date’ is, but if it matters,
they can correctly pass a date along to the routine (like time_diff) which does. Only in the
interior of time_diff do we have to rewrite any programming. (Aside — note that there is still
some work to be done. The newer programming capabilities don’t get rid of that fact. What
they do, as here, is to let us make the changes in the fewest possible places.)

Abstract data types are definitely good things, in the right cases. A bad case is when
the problem really does consist of only a few things which are elementary data types. One
example would be the dynamics section of a CFD model. We have arrays of temperature,

pressure, velocity, We could construct an abstract data type:

type dynamics {
real temperature(360, 180), salt(360, 180), u(360, 180), v(360, 180);

real pressure(360, 180);



dynamics model;
or
type dynamics {

real temperature, salt, u, v, pressure;

dynamics model(360, 180);

but it would be hard to argue that we make the code any clearer by doing this. Abstract

data types are a tool, not necessarily the solution.

4 Objects Introduction

As mentioned in the introduction in addition to bundling bits of data together we bundle
the operations which can be done on those data into our objects. Using only abstract data
types, for example, we have to have a subroutine time diff(t1, t2, delta) that returns a time
difference given two different times. One source of errors is that we have to put the arguments
in the right order. Another is that delta may be a different type than t1 and t2 (delta might
be an integer, number of hours, rather than a ’'date’ type of variable). Worse, if we need
to add some capabilities to the time_diff subroutine, we may need to change (add to, say)
the argument lists and pass additional data (for instance, a change to dates in seconds from
dates in minutes or changing delta to be seconds difference rather than a date difference).
By bundling together the operations with the data, we can avoid those opportunities for

error. delta = tl - t2 becomes a legitimate expression. No argument order to remember.

10



What needs to be done is for one person to define how to subtract two dates. We may
want the delta to be an integer (number of seconds), in which case by operator overloading
(section NN) we’ll get the conversion from whatever the - operation returns to an integer.

An illustration of an object (I'll use something like C++ code here) is:

class date {
public:

int year, month, day, hour, minute, second;

operator+(date) ;
operator-(date) ;
operator=(date) ;
operator>(date) ;

operator<(date) ;

near(date, window) ;
int seconds(date);

int ) (date);

What we’ve done here is to say that dates are given by the year, month, day, hour, minute,
second, same as for an abstract data type. We also declare that it will be possible to add,
subtract, and equate two dates (the business with (date) is saying that we’re declaring a

function which takes a date as its argument). More interesting is that we are also declaring

11



that it is meaningful to ask if one date is greater than or less than another date. Now we
can use proper logical tests! Much, much, nicer than either explicitly calling a function or
inlining the series of tests that would otherwise be needed.

Before proceeding in to the details of objects, I'll list some things that we work with that

can easily be considered/ treated as objects.

Dates

Locations

Buoy reports

Soundings (both atmospheric and oceanic)
Satellite scans

2d grids

3d grids

Metric grids

GRIB messages

BUFR messages

HDF

SDR, TDR, EDR files/messages

CEOS data (Alaska SAR facility Radarsat, some ERS data)
The list also serves to introduce the notion that we can nest types of objects. A metric

grid, for instance, is a particular type of 2d grid. As I've done it for the COFS interpolator,
for instance, a metric grid is a 2d grid which also has a latitude-longitude < - > ij mapping.
Each type of object also can have further descended objects, for instance, the class (type of

object) metric grid, can have subclasses:

12



Polar stereographic
Latitude-longitude
Mercator

Lambert Conformal
COFS

ETA native
Gaussian

Spectral

EASE

And, to continue a bit, Polar stereographic can have subclasses

North ice analysis
South ice analysis
North ice model
South ice model
North Bedient
Nouth Bedient
North NASA

Nouth NASA
The line of descent is then 2d grid -> metric grid -> polar stereographic grid -> North ice

analysis (for example). The 2d grid is a nice general object, with quite a few operations that
can be specified and typically used. This class has a few thousand lines supporting it. The
metric grid adds some capabilities, namely location translation (but, since we don’t know

what the mapping is, we can’t really invoke this class. This is a virtual class, which will be

13



defined in section 6) for only a few lines. Creating a subclass of the metric class requires that
we add a couple dozen lines per grid type (namely, describing the mappings between latitude-
longitude and i-j) , but once this is done, we can do anything that we can do to any ancestor
class — anything that can be done with a 2d grid can be done with a polar stereographic
grid. And, here’s the important part, nobody needs to write an extra line of code to do this.
We make the compiler figure out those parts. The last bit of descent, declaring a north ice
analysis grid, takes only the few lines required to specify what is different between the north
ice analysis grid and the generic polar stereographic grids. Only a handful of lines, and we
make the grid’s creator write those.

Suppose, now, someone wanted to use a data file that contained a north ice analysis grid.
The form for doing so would be:

#include "metric.h” (include the metric grid class)
main program here
north_analysis x; (declare that x is a north_analysis grid)
latpt llocation; (a location in latitude-longitude space)
ijpt ijlocation; (a location in ij space)
int val; (an integer value)
(various set up done here)
x.read(”b3north.970618”); (read in the north_analysis grid from some file)
x.print(”output”); (print it out in plain text)
ylocation = x.locate(ijlocation); (find the latitude-longitude of an ij point)
val = x.get(ylocation); (find the value corresponding to a latitude-longitude location)
val = x.get(ijlocation); (find the value corresponding to an ij location)

14



Note that our programmer here never needed to know anything at all about the nature
of the north_analysis grid, except that there was such a thing and some descriptions of what
things can be done to 2d grids. We’ve gone beyond Fortran libraries because we never need
to know those details. Further, we’d write the same program if we were working with a
mercator grid, an ETA grid, etc. No arguments change, and no function names change.
At some later date, the north_analysis grid could become higher resolution, or change to
Lambert Conformal (say), and our programmer would still not need to change a single line

of his program.

5 Objects: Operators, and Overloading

In constructing our object, we can declare how some special operators — including +, -, =
work for our object. If the object is primarily a mathematical one (as most of ours tend
to be) these operations are a good idea. This also lets us use standard math in writing
operations in cases where we might not be able to in Fortran. For instance, in one part of
my SSMI processing, I add the brightness temperatures for later averaging. At the moment,
I do this in C with abstract data type syntax, like sum.t19v = sum.t19v + new.t19v; where
I then repeat this for each data entry. In C++, I'd write it as sum = sum + new; and avoid
the extra opportunity for typos.

In between all of this is the fact that since we declare operations (and functions) with

respect to a specific class, we have the opportunity to use the same function name in different

15



contexts. For instance, having defined a version of 4+ to work on SSMI points, we can write
X 4+ y where x and y are ssmi points, or where they're integers. We make the compiler
figure out which one is appropriate in the context. This is called overloading. Because of
overloading, we are able to focus more on what we'’re trying to do than on the details of
what the computer knows about.

Overloading also permits y = x.locate(ij); and z = x.locate(1l); to be interpreted correctly.
In the first case, I'm requesting the latitude-longitude location of a given i,j point in a grid.
In the second, I'm requesting the i,j location of a given latitude-longitude point in the grid.
In both cases, we want a location so we use the same name. What sort of location we want
is determined by the type of information we pass the function. The compiler sorts out which
locate function to use, rather than making us look up (and remember) two different names.

It goes beyond this, even. Since x is some type of object (maybe a polar stereographic
grid, maybe a mercator grid), not only does the compiler pull out whether I want the locate
that gives a latitude-longitude versus an i,j, it also determines what grid system’s conversion
I'm going to need. Since we have a number of different map projections, and a number
of specializations of each projection, there would be something like 500 function names to
remember in a Fortran code, as compared to the one that we have via C++. One alternate
method, used in the w3ft32 routine, is instead of having dozens of subroutines, to pass the
grid numbers that correspond to the grids you want. The code is well-written, but instead of
memorizing dozens of subroutine names, you have to memorize dozens of grid code numbers.

Overloading avoids both.

16



6 Object Templates and Inheritance

Templates and inheritance different things, but they derive from the same principle. The
principle is that objects should behave in the same way as similar objects. By inheritance,
we say that the new object is just like the old one, except for the following, (whatever it is
that is different.) Templates are different in that we don’t create a new class, but we do say

that we have the same operations being performed in the same way. To illustrate:

template <class T>
class grid2 {

int nx, ny;

T grid(nx, ny);

etc.

We've declared that there is a grid2 class, that it has integers nx and ny (i.e. the
dimensions of our grid), and that it has a grid of data nx by ny of type T. What is this T?
T is our templated type. T is any type of thing that the system knows about. It could be
an integer, it could be a floating point number, it could be a buoyreport. Logically, we can
have grids of all kinds of things. Rather than defining separate classes for each kind of thing
that we might grid (a phenomenally tiresome task), and write separate sets of subroutines
to operate on each one of them (even worse), we say that we don’t care what kind of thing it
is that gets gridded. Whatever it is that we’ve got a grid2 of, we expect to be doing certain
things (that’s what’s in the etc. of the declaration) such as adding two grids of these 'T’
things.

17



Again, this gives us a great savings over Fortran and C. Instead of writing separate
routines to find the average of a grid of integers and for a grid of real numbers, we write one
routine. The logic is the same after all. Once we write the one routine, we are done. For

example, the averaging function for a templated grid is:

template <class T>
T grid2<T>::average() {
// Note that this says a grid2 of things of type T can be averaged.
// There are no arguments to this routine.
// The result of the averaging operation is another variable of type T
double sum; // Make our sum double precision to ensure against overflow
// in the summation process.

ijpt loc; // We’ll move over all points in the original grid.

sum = 0.0;

for (loc.j = 0; loc.j < this->ypoints() ; loc.j++) {
for (loc.i = 0; loc.i < this->xpoints() ; loc.i++) {

sum += this->operator[](loc);

sum /= (this->ypoints()*this->xpoints() );

return (T) sum;

18



The actual implementation is somewhat easier to read than this as we made use of some
internal features. This code is robust against changes to the internal representation of grid2’s.
Inheritance, I’ve already mentioned some regarding. Here we’ll fill out the picture. We

start with our base class, grid2:

template <class T>
class grid2 {
int nx, ny;

T grid2(nx, ny);

T average();
T maximum() ;
T minimum() ;

grid2<T> laplace();

writeout (FILE *);

readin(FILE *);

The grid2 class I've constructed has quite a few more capabilities than this, but this is
illustrative. We can to arithmetic on grid2’s, we can read and write them, and we can do a
few operations on them like finding the average or taking the laplacean. This is our basic

2d array of things class. It is a templated class, so that the 'things’ can be more than the

19



usual integer and floating point as long as we’ve defined how the operations that grid2’s are
supposed to be able to do — +,-,*, in this case — work.

Handy as this is, we may want to do more. Often we wind up caring about what point
on the earth a grid point corresponds to. In order to do this, we need to know what the map
projection is, in full detail. We could, and I did this initially, simply start up a set of classes
and say that polars tereographic was descended from the grid2, and a latitude-longitude grids
was also descended (separately) from a grid2, and on for each type of map projection. This
is legal, but it obscures the fact that each projection has some things in common. Regardless
of what the map projection is, we will need two functions: one to convert from ij coordinates
to latitude-longitude, and one to convert back. We will also find it useful to import a grid2
to a projection grid. Here we have a case where we know that there are some operations
which are required for a proper member of the group, but we don’t know ahead of time how
to write a function for all of them. This is the case where we want a ’pure virtual’ class.

The metricgrid is:

template <class T>
class metricgrid : public grid2<T> {
operator=(grid2 );

latlonpt locate(ijpt)

1]
o

1]
(@]

ijpt locate(latlonpt)

We declare that there will be a class called metricgrid, and this is a templated class which

inherits from grid2. The first line says that we’re going to define how to import a grid2 in

20



to a metricgrid. (We can do this since we can say that it simply means to let the nx, ny,
and grid values of the metricgrid be the same as the grid2.) The next two lines are peculiar.
The first part is the expectable business of saying that I have two ’locate’ functions, one
which takes an ijpt and returns a latlonpt, and one which takes a latlonpt and returns the
corresponding ijpt. We can’t actually write these functions, because we don’t know what
the map projection is. We put the = 0 in the declaration in order to tell the compiler this.
By doing so, we have made metricgrid a virtual class. You can’t actually declare an object
which is a metricgrid.

What you can do is declare a class which is descended from the metricgrid. In order
to construct this class, however, the compiler is going to require that you define how those
two locate functions work. For free you get the thousand (and rising) lines of support that
exist in the grid2 class, and get to use all functions which know how to use a metricgrid. In
repayment, you have to add a couple dozen lines (or whatever) it takes to make the locate
functions work. (Well, someone has to write those lines. Preferably we make, say, the ETA
people write the ETA locate functions.)

By proper use of these pure virtual classes and some related matters, we also can construct
robust libraries and enforce standards. The libraries become robust because we know that
certain functions are required of the classes, and can require that they be specified even
before knowing who is going to make a new class or for what reason. We enforce standards
by virtue of the fact that either: 1) the function or datum is inherited from a standards-
conforming base class or 2) the function is required to exist by the base class. We have the
added utility in standards enforcement that it becomes much easier to find the right routine
to perform the action you want. First, fewer names are required. And second, since the

21



actions are tied to the classes, we know to look in the declaration of the class.

7 Using the OMB Class Library

The class library itself is defined in tech note 186, online at
http://polar.wwb.noaa.gov/omb/papers/tn186/. The online documentation should be taken
as authoratative rather than comments in this illustrative note. A more detailed examination
of a particular usage of the class library — the COFS interpolator — is given in Grumbine
[2000Db)].

To compile a program in C++, you need to name the compiler, and add ’define’ the
platform you’re on, and give directions to the include and library directories. The specifics

for each local platform are given below. The command line will look like:

g++ program.C -DLINUX -I /usr/local/include /usr/local/lib/cpplib

platform compiler include directory

IBM SP - operational x1C /nwprod/omblib90/omblib.source/include
IBM SP - developmental xIC /nfsuser/g01/marine/local /include

sgil00 CC /migr/data/wd21rg/includes

polar g++ /usr/local /include

22



platform library D
IBM SP - operational /nwprod/omblib90/omblibc_4_604 IBM

/nwprod/omblib90/omblibf 4_604

IBM SP - developmental /nfsuser/g01/marine/local/lib/cpplib IBM
sgil00 /migr/data/wd21rg/lib/ SGI
polar Jusr/local/lib/cpplib LINUX

8 References

Grumbine, R. W., 2000a, OMB C++ Class Library Description, Technical Note 186,
http://polar.wwb.noaa.gov/papers/tn186/.
Grumbine, R. W., 2000b, OMB C++ Class Library Demonstrations. In Preparation.
Stroustroup, B., 1997, The C++ Programming Language, 3rd edition, Addison-Wesley,

911 pp.

23



